一、铀转化厂
是的核七院是中核七院隶属于中国核工业集团有限公司,是我国唯一的铀浓缩、铀纯化转化工程研究设计单位。拥有中核集团铀浓缩工程技术研究中心、中核集团铀纯化转化工程技术研究中心,是研发与设计融合、技术研究与工程应用融合的国家高新技术企业;具有工程总承包、工程设计、工程咨询、工程勘察、工程监理和工程造价等领域的甲级资质证书
二、铀转化流程图
浓缩”术语的使用涉及旨在提高某一元素特定同位素丰度的同位素分离过程,例如从天然铀生产浓缩铀或从普通水生产重水。浓缩设施分离铀同位素的目的是提高铀-235相对于铀-238的相对丰度或浓度。这种设施的能力用分离功单位衡量。 若要在某些类型反应堆和武器中使用铀,就必须对其进行浓缩。这意味着必须提高易裂变铀-235的浓度,然后才能将其制成燃料。这种同位素的天然浓度是0.7%,而在大多数通用商业核电厂中,持续链式反应的浓度通常约为3.5%。用于武器和舰船推进的丰度通常约为93%。但舰船推进可以只需20%或更低的丰度。鉴于在丰度0.7%至2%之间需要与丰度2%至93%之间同样多的分离功,因此浓缩过程不是线性的。这意味着在能够随时获得商用浓缩铀的情况下,达到武器级的浓缩工作量可减少到不足一半,而铀的供料量可减少到20%以下。 在适用于提高铀-235浓度的技术中,有7项技术特别重要: 气体扩散法——这是商业开发的第一个浓缩方法。该工艺依靠不同质量的铀同位素在转化为气态时运动速率的差异。在每一个气体扩散级,当高压六氟化铀气体透过在级联中顺序安装的多孔镍膜时,其铀-235轻分子气体比铀-238分子的气体更快地通过多孔膜壁。这种泵送过程耗电量很大。已通过膜管的气体随后被泵送到下一级,而留在膜管中的气体则返回到较低级进行再循环。在每一级中,铀-235/铀-238浓度比仅略有增加。浓缩到反应堆级的铀-235丰度需要1000级以上。 气体离心法——在这类工艺中,六氟化铀气体被压缩通过一系列高速旋转的圆筒,或离心机。铀-238同位素重分子气体比铀-235轻分子气体更容易在圆筒的近壁处得到富集。在近轴处富集的气体被导出,并输送到另一台离心机进一步分离。随着气体穿过一系列离心机,其铀-235同位素分子被逐渐富集。与气体扩散法相比,气体离心法所需的电能要小很多,因此该法已被大多数新浓缩厂所采用。 气体动力学分离法——所谓贝克尔技术是将六氟化铀气体与氢或氦的混合气体经过压缩高速通过一个喷嘴,然后穿过一个曲面,这样便形成了可以从铀-238中分离铀-235同位素的离心力。气体动力学分离法为实现浓缩比度所需的级联虽然比气体扩散法要少,但该法仍需要大量电能,因此一般被认为在经济上不具竞争力。在一个与贝克尔法明显不同的气体动力学工艺中,六氟化铀与氢的混合气体在一个固定壁离心机中的涡流板上进行离心旋转。浓缩流和贫化流分别从布置上有些类似于转筒式离心机的管式离心机的两端流出。南非一个能力为25万分离功单位的铀-235最高丰度为5%的工业规模的气体动力学分离厂已运行了近10年,但也由于耗电过大,而在1995年关闭。 激光浓缩法——激光浓缩技术包括3级工艺:激发、电离和分离。有2种技术能够实现这种浓缩,即“原子激光法”和“分子激光法”。原子激光法是将金属铀蒸发,然后以一定的波长应用激光束将铀-235原子激发到一个特定的激发态或电离态,但不能激发或电离铀-238原子。然后,电场对通向收集板的铀-235原子进行扫描。分子激光法也是依靠铀同位素在吸收光谱上存在的差异,并首先用红外线激光照射六氟化铀气体分子。铀-235原子吸收这种光谱,从而导致原子能态的提高。然后再利用紫外线激光器分解这些分子,并分离出铀-235。该法似乎有可能生产出非常纯的铀-235和铀-238,但总体生产率和复合率仍有待证明。在此应当指出的是,分子激光法只能用于浓缩六氟化铀,但不适于“净化”高燃耗金属钚,而既能浓缩金属铀也能浓缩金属钚的原子激光法原则上也能“净化”高燃耗金属钚。因此,分子激光法比原子激光法在防扩散方面会更有利一些。 同位素电磁分离法——同位素电磁分离浓缩工艺是基于带电原子在磁场作圆周运动时其质量不同的离子由于旋转半径不同而被分离的方法。通过形成低能离子的强电流束并使这些低能离子在穿过巨大的电磁体时所产生的磁场来实现同位素电磁分离。轻同位素由于其圆周运动的半径与重同位素不同而被分离出来。这是在20世纪40年代初期使用的一项老技术。正如伊拉克在20世纪80年代曾尝试的那样,该技术与当代电子学结合能够用于生产武器级材料。 化学分离法——这种浓缩形式开拓了这样的工艺,即这些同位素离子由于其质量不同,它们将以不同的速率穿过化学“膜”。有2种方法可以实现这种分离:一是由法国开发的溶剂萃取法,二是日本采用的离子交换法。法国的工艺是将萃取塔中2种不互溶的液体混和,由此产生类似于摇晃1瓶油水混合液的结果。日本的离子交换工艺则需要使用一种水溶液和一种精细粉状树脂来实现树脂对溶液的缓慢过滤。 等离子体分离法——在该法中,利用离子回旋共振原理有选择性地激发铀-235和铀-238离子中等离子体铀-235同位素的能量。当等离子体通过一个由密式分隔的平行板组成的收集器时,具有大轨道的铀-235离子会更多地沉积在平行板上,而其余的铀-235等离子体贫化离子则积聚在收集器的端板上。已知拥有实际的等离子体实验计划的国家只有美国和法国。美国已于1982年放弃了这项开发计划。法国虽然在1990年前后停止了有关项目,但它目前仍将该项目用于稳定同位素分离。 迄今为止,只有气体扩散法和气体离心法达到了商业成熟程度。所有这7项技术均在不同程度上具有扩散敏感性,因为它们都能够在一项秘密计划中不惜代价地被用于从天然铀或低浓铀生产高浓铀。但是,由于这些技术的特征不同,因而将影响到其被探知的可能性。(引自联合国网站)
三、铀转化为钚
恒星燃烧,是核聚变反应把氢变成氦,氦变成锂,以此类推,不停燃烧,直到出现铁原子,宇宙中最稳定的原子会,堵塞核聚变能量释放的通道,结果恒星走到生命的尽头,这时候恒星就像个巨型炸弹,进行猛烈地爆炸,形成元素周期表剩下的元素,包括铀和钚。
四、铀转化设施设计规范
2.4816合金是镍-铬-铁基固溶强化合金,具有良好的耐高温腐蚀和抗氧化性能、优良的冷热加工和焊接性能,在700℃以下具有满意的热强性和高的塑性。合金可以通过冷加工得到强化,也可以用电阻焊、溶焊或钎焊连接,适宜制作在1100℃以下承受低载荷的抗氧化零件。 具有以下特性 具有很好的耐还原、氧化、氮化介质腐蚀的性能 在室温及高温时都具有很好的耐应力腐蚀开裂性能 具有很好的耐干燥氯气和氯化氢气体腐蚀的性能 在零下、室温及高温时都具有很好的机械性能 应用领域 侵蚀气氛中的热电偶套管 氯乙烯单体生产:抗氯气、氯化氢、氧化和碳化腐蚀 铀氧化转换为六氟化物:抗氟化氢腐蚀 腐蚀性碱金属的生产和使用领域,特别是使用硫化物的环境 用氯气法制二氧化钛 有机或无机氯化物和氟化物的生产:抗氯气和氟气腐蚀 核反应堆 热处理炉中曲颈瓶及部件,尤其是在碳化和氮化气氛中 石油化工生产中的催化再生器在700℃以上的应用中推荐使用合金600H 以获得较长的使用寿命。
五、铀转化生产线主要工艺流程
铀238可以通过吸收中子转变成铀239,然后铀239再经过一系列的衰变反应,最终转变成钚239。
具体来说,铀238在吸收一个中子后,形成铀239,同时释放出一个电子和一个反中子:
U-238 + n → U-239 + e- + anti-nu-e
铀239是一种不稳定的核素,会经历一系列的衰变反应。首先,铀239会发生β-衰变,将其中一个中子转变为质子,并释放出一个电子和一个反电子中微子:
U-239 → Np-239 + e- + anti-nu-e
这样就得到了镎239(Np-239)。接着,镎239会再次发生β-衰变,将另一个中子转变为质子,并释放出一个电子和一个反电子中微子:
Np-239 → Pu-239 + e- + anti-nu-e
这样就得到了钚239(Pu-239)。钚239是一种重要的核燃料,可以用于核能产生和核武器制造等方面。
六、铀转化设计规范
25吨天然铀能制10千克核燃料
铀的提取必须用化学试剂把矿石中铀的有用组分转化为可溶性化合物,即把铀从固相转为液相,再经固液分离把含铀的浸出液与矿渣分离,然后用离子交换、萃取、沉淀等方法对含铀浓度低、杂质含量高的浸出液进行铀的浓缩、提取,制得不同形式的铀化学浓缩物,亦即“黄饼
七、铀转化科技进展
因为浓缩铀会发生裂变反应。
铀-235会发生核裂变过程,损失的质量约为0.09%,也就是1克约有0.9毫克的质量转化为能量,根据质能方程计算:0.001*0.0009*300000000^2=81000000000J。也就是说,这1克铀-235全部发生裂变,产生的能量约为810亿焦耳。
八、铀转化为钚的方程式
钚的提取天然铀制成的核燃料元件,在生产堆进行燃烧和辐照后,生成钚-239。
把它分离出来需送到专用的后处理厂来分离加工,需要把没有“烧”尽的铀分离出来再利用,还需要把钚-239同其他裂变产物分离开。
后处理方法分为湿法和干法两种。
干法尚处于研究开发阶段,目前主要应用湿法。
湿法又分为沉淀法、溶剂萃取法,离子交换法三种。
其中沉淀法已属陈旧,目前主要应用溶剂萃取法,也称普雷克斯(Purex)流程。
其基本原理是利用铀、钚以及裂变产物的不同价态在有机溶剂中有不同的分离系数,将它们一一分开。
钚-239分离出来后,还需要纯化,去除微量杂质,才能作为核武器的装料。
我国依靠自己的科技力量,于60年代中期独立开发了萃取法工艺流程,并建成了中间试验厂和大型后处理厂。
生产堆的乏燃料经后处理,铀与钚进行分离后,铀-235还有一定的含量,经纯化工序后,再经转换,为扩散厂提供原料。